On Küchle varieties with Picard number greater than 1

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth projective horospherical varieties with Picard number 1

We describe smooth projective horospherical varieties with Picard number 1. Moreover we prove that the automorphism group of any such variety acts with at most two orbits and we give a geometric characterisation of non-homogeneous ones.

متن کامل

On some smooth projective two - orbits varieties with Picard number 1 Boris Pasquier

We classify all smooth projective horospherical varieties with Picard number 1. We prove that the automorphism group of any such variety X acts with at most two orbits and that this group still acts with only two orbits on X blown up at the closed orbit. We characterize all smooth projective two-orbits varieties with Picard number 1 that satisfy this latter property. Mathematics Subject Classif...

متن کامل

On some smooth projective two-orbit varieties with Picard number 1

We classify all smooth projective horospherical varieties with Picard number 1. We prove that the automorphism group of any such variety X acts with at most two orbits and that this group still acts with only two orbits on X blown up at the closed orbit. We characterize all smooth projective two-orbit varieties with Picard number 1 that satisfy this latter property. Mathematics Subject Classifi...

متن کامل

Smooth Projective Symmetric Varieties with Picard Number One

We classify the smooth projective symmetric G-varieties with Picard number one (and G semisimple). Moreover we prove a criterion for the smoothness of the simple (normal) symmetric varieties whose closed orbit is complete. In particular we prove that, given a such variety X which is not exceptional, then X is smooth if and only if an appropriate toric variety contained in X is smooth. keywords:...

متن کامل

Q-factorial Gorenstein Toric Fano Varieties with Large Picard Number

In dimension d, Q-factorial Gorenstein toric Fano varieties with Picard number ρX correspond to simplicial reflexive polytopes with ρX+d vertices. Casagrande showed that any d-dimensional simplicial reflexive polytope has at most 3d vertices, if d is even, respectively, 3d − 1, if d is odd. Moreover, for d even there is up to unimodular equivalence only one such polytope with 3d vertices, corre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Izvestiya: Mathematics

سال: 2015

ISSN: 1064-5632,1468-4810

DOI: 10.1070/im2015v079n04abeh002758